compressor Documentation
Release 0.2.0

Mariano Anaya

May 07, 2019

Contents

1 Using the Application 3
L1 BasiCusage v v v v e 3
2 compressor 5
2.1 compressor package e 5
3 Indices and tables 9

Python Module Index 11

compressor Documentation, Release 0.2.0

Pycompressor is a tool for compressing text files into smaller ones, as well as extracting compressed files back
into the original content.

For example, in order to compress one file:

$ pycompress -c /usr/share/dict/words -d /tmp/compressed.zf

The original file, in this example has a size of ~4 . 8M, and the tool left the resulting file at /tmp/compressed. zf,
with a size of ~2. 7M.

In order to extract it:

$ pycompress —-x /tmp/compressed.zf -d /tmp/original

You can specify the name of the resulting file with the —d flag. If you don’t indicate a name for the resulting file, the
default will be <original-file>.comp.

For the full options, run:

$ pycompress -h

Contents:

Contents 1

https://travis-ci.org/rmariano/compr
https://codecov.io/gh/rmariano/compr

compressor Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Using the Application

This section explains how the application is used from the command line interface (c11), detailing which parameters
are accepted and how they work.

1.1 Basic usage

1.1.1 Compressing a File

You can start using the program by just running it, and telling pycompressor the name of the file you’d like to
compress, for example:

$ pycompress —-c /usr/share/dict/words

The -c¢ parameter stands for “compress”, and if nothing else is specified, the resulting file will be left on the current
directory, with the base name of the provided file and the . comp suffix. In this example, the result of will be a file
named words . comp.

You can change the name of the resulting file, by passing the -d (destination) flag, like in:

$ pycompress -c /usr/share/dict/words -d /tmp/compressed.zf

In this case the resulting file (after compressed) will be /tmp/compressed. z£.

1.1.2 Extracting a file

If you want to recover the original file from a binary, compressed one, use the —x (extract) flag:

$ pycompress -x /tmp/compressed.zf

If a name for the resulting file is not specified, it’ll assume the base name provided with the . ext r suffix, in the local
path of where the command is being applied. In this case, it would be compressed.zf.extr.

compressor Documentation, Release 0.2.0

You can also indicate the name of the destination file, again with the —d parameter:

$ pycompress -x /tmp/compressed.zf -d /tmp/original

The destination file in this case, indicates that after extracted the file is written in /tmp/original.

4 Chapter 1. Using the Application

CHAPTER 2

compressor

2.1 compressor package

2.1.1 Submodules

2.1.2 Module contents

compressor entry point

2.1.3 lib module

compressor.lib
High-level functions exposed as a library, that can be imported.

compressor.lib.compress_file (filename: str, dest_file: str =) — None
Open the <filename> and compress its contents on a new one.

Parameters
* filename (str)— The path to the source file to compress.

* dest_file (str)— The name of the target file. If not provided (None), a default will be
used with <filename>.comp

2.1.4 cli module
Compressor CLI (command-line interface) module. Exposes the entry point to the program for executing as command
line.

compressor.cli.argument_parser () — argparse.ArgumentParser
Create the argument parser object to be used for parsing the arguments from sys.argv

compressor Documentation, Release 0.2.0

compressor.cli.main () — int
Program cli

Returns Status code of the program.
Return type int

compressor.cli.main_engine (filename: str, extract: bool = False, compress: bool = True,

dest_file=None) — int
Main functionality for the program cli or call as library. extract & compress must have opposite values.

Return type int
Parameters
* filename (str) — Path to the source file to process.
* extract (bool) - If True, sets the program for a extraction.
* compress (bool) — If True, the program should compress a file.
* dest_file — Optional name of the target file.
Returns 0 if executed without problems.

compressor.cli.parse_arguments (args=None) — dict
Parse the command-line (cli) provided arguments, and return a mapping of the options selected by the user with
their values.

Returns dict with the kwargs provided in cli

2.1.5 compressor.core module

compressor.core
Low-level functionality with the core of the process that the main program makes use of.
It contains auxiliary functions.

class compressor.core.CharNode (value, freq, left=None, right=None)
Bases: object

Object that wraps/encapsulates the definition of a character in the text being processed. Used for comparison,
and helper with its properties & methods.

leaf
Checks if the current node is a leaf in the tree. It is a leaf when it does not have any children (neither left
nor right).

Returns True if this node has no children, False otherwise.

value
Expose the value being hold as read-only.

compressor.core.compress_and_save_content (input_filename: str, output_file: io, table: dict)

— None
Opens and processes <input_filename>. Iterates over the file and writes the contents on output_file.

Parameters
* input_filename (str)— the source to be compressed
* output_file (i0)— opened file where to write the outcome

* table (dict) — mapping table for the char encoding

6 Chapter 2. compressor

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

compressor Documentation, Release 0.2.0

compressor.core.create_tree_code (charset: List[compressor.core.CharNode]) — compres-

)) sor.core.CharNode) .
Receives a :list: of :CharNode: (characters) charset, namely leaves in the tree, and returns a tree with the

corresponding prefix-free code.
Return type CharNode
Parameters charset — iterable with all the characters to process.
Returns iterable with a tree of the prefix-free code for the charset.

compressor.core.decode_file_content (compfile: io, table: dict, checksum: int) — str
Reconstruct the remaining part of the <compfile>, starting right after the metadata, decoding each bit according
to the <table>.

compressor.core.parse_tree_code (tree: compressor.core.CharNode, table: dict = None, code:
bytes = b”) — dict
Given the tree with the chars-frequency processed, return a table that maps each character with its binary repre-
sentation on the new code:

left >0
right —> 1

Return type dict
Parameters
* tree (CharNode) — iterable with the tree as returned by create_tree_code

* table (dict) — Map with the translation for the characters to its code in the new system
(prefix-free).

* code (bytes)— The code prefix so far.
Returns Mapping with with the original char to its new code.

compressor.core.process_frequencies (stream: Sequence[str]) —

List[compressor.core.CharNode]
Given a stream of text, return a list of CharNode with the frequencies for each character.

Parameters stream — sequence with all the characters.
compressor.core.process_line_compression (buffer_line: str, output_file: io, table: dict) —
Transform buffer_line into the new code, per-byte, basegI 8II11etable and save the new byte-stream into output_file.
Parameters
* buffer line (str)— achunk of the text to process.
* output_file (i0)— The opened file where to write the result.
* table (dict) — Translation table for the characters in buffer_line.

compressor.core.retrieve_compressed_file (filename: str, dest_file: str = ”) — None
EXTRACT - Reconstruct the original file from the compressed copy. Write the output in the indicated dest_file.

compressor.core.retrieve_table (dest_file: io) — dict
Read the binary file, and return the translation table as a reversed dictionary.

compressor.core.save_compressed_file (filename: str, table: dict, checksum: int, dest_file: str =

”) — None
Given the original file by its filename, save a new one. fable contains the new codes for each character on

filename.

2.1. compressor package 7

compressor Documentation, Release 0.2.0

compressor.core.save_table (dest_file: io, table: dict) — None

Store the table in the destination file. c: char L: code of ¢ (unsigned Long)

Parameters

* dest_file (i0)— opened file where to write the table.

* table (dict)— Mapping table with the chars and their codes.

2.1.6 functions module

Chapter 2. compressor

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

compressor Documentation, Release 0.2.0

10 Chapter 3. Indices and tables

Python Module Index

C

compressor, 5
compressor.cli,5
compressor.core, 6
compressor.lib,5

11

compressor Documentation, Release 0.2.0

12 Python Module Index

Index

A S

argument_parser () (in module compressor.cli), 5 save_compressed_file () (in module compres-
sor.core), 7
C save_table () (in module compressor.core), T

CharNode (class in compressor.core), 6
compress_and_save_content () (in module com- V
pressor.core), 6 value (compressor.core.CharNode attribute), 6
compress_file () (in module compressor.lib), 5
compressor (module), 5
compressor.cli (module), 5
compressor.core (module), 6
compressor.lib (module), 5
create_tree_code () (in module compressor.core),

6
decode_file_content () (in module compres-
sor.core), 7

L

leaf (compressor.core.CharNode attribute), 6

M

main () (in module compressor.cli), 5
main_engine () (in module compressor.cli), 6

P

parse_arguments () (in module compressor.cli), 6

parse_tree_code () (in module compressor.core), T

process_frequencies () (in module compres-
sor.core), 7

process_line_compression () (in module com-
pressor.core), 7

R

retrieve_compressed_file () (in module com-
pressor.core), 7
retrieve_table () (in module compressor.core), 7

13

	Using the Application
	Basic usage

	compressor
	compressor package

	Indices and tables
	Python Module Index

